Erdos-Ko-Rado theorems for uniform set-partition systems
نویسندگان
چکیده
Two set partitions of an n-set are said to t-intersect if they have t classes in common. A k-partition is a set partition with k classes and a k-partition is said to be uniform if every class has the same cardinality c = n/k. In this paper, we prove a higher order generalization of the Erdős-Ko-Rado theorem for systems of pairwise t-intersecting uniform k-partitions of an n-set. We prove that for n large enough, any such system contains at most 1 (k−t)! ( n−tc c )( n−(t+1)c c ) · · · (n−(k−1)c c ) partitions and this bound is only attained by a trivially t-intersecting system. We also prove that for t = 1, the result is valid for all n. We conclude with some conjectures on this and other types of intersecting partition systems.
منابع مشابه
Intersection Properties of Subsets of Integers
Intersection properties of sets have been widely investigated by many authors. One type of theorems proved for them has the following form [9]. Let S be an n-element set and AI. ... , AN £ S, 1 £ [1, n]. Assume that IAi I1Ajl E 1 for 1,,;;;; i <j ,,;;;;N. How large can N be under this condition, depending on n and I? Thus, e.g., the de Bruijn-Erdos theorem [1] asserts that if IAi I1Ajl = 1 for ...
متن کاملTheorems of Erdos-Ko-Rado type in polar spaces
We consider Erdős-Ko-Rado sets of generators in classical finite polar spaces. These are sets of generators that all intersect non-trivially. We characterize the Erdős-Ko-Rado sets of generators of maximum size in all polar spaces, except for H(4n+ 1, q) with n ≥ 2.
متن کاملErdos-Ko-Rado theorems for simplicial complexes
A recent framework for generalizing the Erdős-KoRado Theorem, due to Holroyd, Spencer, and Talbot, defines the Erdős-Ko-Rado property for a graph in terms of the graph’s independent sets. Since the family of all independent sets of a graph forms a simplicial complex, it is natural to further generalize the Erdős-Ko-Rado property to an arbitrary simplicial complex. An advantage of working in sim...
متن کاملErdös-Ko-Rado-Type Theorems for Colored Sets
An Erdős-Ko-Rado-type theorem was established by Bollobás and Leader for q-signed sets and by Ku and Leader for partial permutations. In this paper, we establish an LYM-type inequality for partial permutations, and prove Ku and Leader’s conjecture on maximal k-uniform intersecting families of partial permutations. Similar results on general colored sets are presented.
متن کاملErdos-Ko-Rado in Random Hypergraphs
Let 3 ≤ k < n/2. We prove the analogue of the Erdős-Ko-Rado theorem for the random k-uniform hypergraph Gk(n, p) when k < (n/2)1/3; that is, we show that with probability tending to 1 as n → ∞, the maximum size of an intersecting subfamily of Gk(n, p) is the size of a maximum trivial family. The analogue of the Erdős-Ko-Rado theorem does not hold for all p when k À n1/3. We give quite precise r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 12 شماره
صفحات -
تاریخ انتشار 2005